
Entwicklung eines OCL-Parsers für
UML-Extensionen

Diplomarbeit

Betreut durch:

Prof. Dr. H. Weber

Technische Universität Berlin

02.03.2004

Fadi Chabarek



1
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Abstract

In this thesis a validator for UML Extensions is developed and implemented. Therefore
an interpreter framework for OCL 1.5 constraints is build. The framework chains a
parser, a context checker and an interpreter. These components access required model
information using a model interface that describes arbitrary models in terms of OCL
concepts. To support MOF 1.4 compliant metamodels, this interface is implemented
using JMI. Based on MDR, interpreter implementations for the MOF Model and the
UML metamodel in the version 1.3 and 1.4 are realized. The latter implementation
can be used to validate UML Profile extensions.
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Chapter 1

Introduction

In this time of globalization of information and accompanying growth in the hetero-
geneity of data the exchange of metadata becomes an increasingly relevant subject.
Metadata is data about data. When used to describe structural and semantical
properties for modeling purposes, metadata expresses a model on a higher level of
abstraction: a metamodel.

The Unified Modeling Language (UML) [UML03] defines one of the most widespread
metamodels. It can be adapted to individual styles of modeling to suite systems
or architectures and bridge heterogeneity in software engineering processes. This is
achieved through an extension mechanism employing so called profiles [UML03, cha.
2.6]. Profiles narrow properties of the metamodel down to domain specific needs by
supporting the definition and application of constraints for individual metamodeling
elements. These additional constraints on the metamodel are usually expressed in the
Object Constraint Language (OCL) [OCL03]. OCL mixes features of object-oriented
(OO) languages like navigation and namespaces with first order logic. It was originally
conceived by IBM for financial projects using OO-architectures. Those projects had
to avoid the ambiguities of natural language and provide domain experts with a
simplified equivalent of mathematical formalisms. Similar problems arose during the
formalization of the UML and OCL was subsequently included in the standard. A UML
model is thus defined as a model that meets the requirement of the static class-based
structure of the metamodel and whose elements satisfy all OCL constraints defined on
these classes. For the latter part, these constraints need to be evaluated. Stereotypical
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CHAPTER 1. INTRODUCTION 2

elements which make up domain specific profiles carry additional constraints and also
have to be evaluated. Although the UML has been in use for a long time, such
evaluators are not available, leaving correctness of models a matter of guesswork
and hand-waving. This thesis provides such an evaluator along with an extensible
validation framework.

1.1 Validation Framework Architecture

For the purpose of validating OCL constraints on the varying versions of the UML
metamodel and its instances, a validation framework is designed. Every version of
the UML metamodel is an isolated model instance described by a metamodel itself.
This metametamodel is the Meta Object Facility (MOF) [MOF02] Model. It forms
the core of the validation framework.

The validator follows the classical pipe-and-filter architecture [Pep97] chaining a
parser, context checker and interpreter (s. figure 1.1).

XMI

MOF Repository

OCL 
File

Validator

Parser Context Checker Interpreter Report

Model Abstraction Layer

Figure 1.1: The Validator Architecture

The input consists of a set of constraints and a description of a model instance and
its metamodel. In order to make this description amenable to analysis, a model
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abstraction layer is developed. It consists of an abstract model and a bridge to the
MOF. On the one hand the abstract model acts as an interface controlling the access
to and the information about OCL concepts included in the model input. On the
other hand the MOF Bridge supports MOF compliant metamodels as it implements
the abstract model with the corresponding model descriptions. The import of a MOF
compliant metamodel described by the XML Metadata Interchange (XMI) [XMI03]
format into a concrete MOF repository technology enables our framework to interpret
and validate OCL constraints on corresponding model instances. This especially allows
us to validate constraints defined on the UML metamodel in its varying versions and
subsequently respective UML Profiles.

1.2 Thesis Structure

Chapter 2 analyzes and adjusts OCL with respect to inconsistencies and inaccuracies.
It builds the foundation the validator is based on. Chapter 3 discusses the relation
between arbitrary models and OCL. It develops the model interface based on the type
and instance level to import a model into the OCL context. The interpreter chain is
presented in chapter 4 through chapter 6. Chapter 4 adjusts the OCL grammar to
be LALR(1)-parseable and develops a corresponding parser. Chapter 5 presents the
context checker. The OCL type system is partitioned into predefined and model types.
OCL predefined types are mapped to Java types so the Java Reflection API [Mic97]
provides access to the properties of the OCL type structure. The integration of model
types obtained from the model interface completes the design of the type system.
Context dependent OCL features and types are checked. Chapter 6 reuses these types
to develop the interpreter. Analogously to the type check an evaluation algorithm is
defined. To represent and access validation results of constraints the model interface
is extended. Chapter 7 discusses the relation between MOF metamodels and OCL.
Consistently the MOF Bridge is developed and implemented on the basis of the model
interface. It extends the validation framework to support OCL constraints defined on
MOF compliant metamodels. Chapter 8 refines the MOF Bridge to support the
varying versions of the UML metamodel and UML Profiles. Chapter 9 concludes with
a summary and gives a short outlook to OCL 2.0 [ocl04].
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1.3 Typeface Conventions

This thesis uses the following typeface conventions:

• production rules, terminal and nonterminal symbols

• Java code

• OCL constraints and expressions



Chapter 2

Assumptions about the OCL

A number of inaccuracies and inconsistencies within the OCL standard impact on
the development of an OCL validator. This chapter introduces and lays out the
assumptions made in design and implementation of the interpreter.

2.1 The Grammar

A grammar is defined as a 4-tuple (Σ, N , S , P), where Σ is an alphabet, N ⊆ Σ is a
set of non-terminal symbols, S ∈ N is a start-symbol and P is a set of productions of
the grammar. The OCL grammar is not explicitly defined; only the sets of productions
and non-terminals are specified [OCL03, cha 3.9]. We assume:

1. The start-symbol of the grammar is the non-terminal oclFile.

2. Σ corresponds to UNICODE [Con03].

2.1.1 Package Construct

[OCL03, cha. 3.5] states that: “[. . . ] constraints can be enclosed between ‘package’
and ‘endpackage’ statements”. Regarding the derivation of the nonterminal oclFile
with

5
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oclFile := ( "package" [...] "endpackage" )+

we conclude that the package-endpackage statement is mandatory and not optional
as stipulated by the statement above.

2.1.2 String Literals

The predefined type String is specified as the representation of a string consisting of
ASCII or multi-byte characters [OCL03, cha. 8.1.9]. The corresponding production
of the string literal is defined as:

string := " ’ "

(( ∼ [ " ’ " , "\\", "\n", "\r"] )

| [...] )∗

"’"

The OCL standard states that the Java-CC [JCC03] notation for the symbol ’∼’
is used. Java-CC defines: “If the character list is prefixed by the ‘∼’ symbol, the
set of characters it represents is any UNICODE character not in the specified set.”
[JCC03, URI: /doc/javaccgrm.html ].We adopt the definition of the grammar
and extend the OCL Type String to UNICODE. This extension can be used to support
international applications [ISS03].

2.1.3 Boolean Literals

In [OCL03, cha. 4] the values true and false are introduced as type Boolean. The
literal false is then used as an example in [OCL03, cha. 4.4] in the OCL expression:
23 * false. As a subexpression the literal false (and supposedly true) is regarded as
an OCL expression itself. We therefore extend the production literal through the
choice and production boolean:
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literal := string | number | boolean | enumLiteral
boolean := "true" | "false"

2.2 Isolation of the Model

We regard every model in the context of OCL as closed. Thereby each property
defined in the model can only be parameterized by and result in types contained in
the model itself.

2.3 Denotational Character of Qualifiers

A consequence of the closeness of the model is that navigation cannot be qualified
via predefined types. The following example of OCL would therefore not be defined
in its context [OCL03, cha. 5.7]:

s e l f . customer [ 8 7 6 4 4 2 3 ]

In the context of OCL the qualifier of this navigation is a number and thus of the
basic type Integer. This argument is not part of the model and the expression would
therefore be undefined.
In order to support these types of qualifications we assume that qualifiers are used as
denotations. Thus qualifier expressions are type-checked and evaluated; the result is
a denotation that must be interpreted by the model.

2.4 AllInstances

According to the type definition of OclType the feature allInstances is an operation.
In [OCL03, cha. 5.11] this property is used as a structural feature. We assume
that the type definitions are generally more precise than the examples and therefore
interpret allInstances as operation.
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2.5 Ambiguous Navigation Caused by Shorthand

for Collect

As described in [OCL03, cha. 5.7], an association with multiplicity one or zero can
be navigated to another single model element. This single model element can also
be used as a one-membered collection. A collection’s property can be accessed via
the shorthand for collect [OCL03, cha. 6.2.1]. Suppose a property is addressed as
the result of such a navigation, it could represent either the property on the single
model element or the shorthand notation for collect on the collection. Though the
result seems similar, the type is ambiguous; it may be the result type of the property
itself, or a Set of the result type of the property. Oddly an example can be found in
the OCL standard itself (refer [OCL03, p. 6-8]):

context Person inv :
l e t income : Integer = s e l f . j o b . s a l a r y −> sum ( )
. . .

In this example a person is navigated to its job. The result of the navigation is a job
acting as a Set(Job). The example suggests that the property salary should then
be collected. The result type would be a Set(Integer) which defines the collection
property sum(). The fact that the model element always defines the feature itself
is not considered. Its result type would be of type Integer; the property sum() is
undefined.

In order to avoid this ambiguity result types of property calls after navigation over
an association with multiplicity one or zero are considered as a model element acting
as a collection including itself. In the example above this convention causes that the
attribute salary is handled as an association. The multiplicity is one or zero and the
result type is thus defined in terms of OCL.

2.6 Scopes

Some scopes of variables are not defined within the standard, it is assumed that:
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• The scope of iterator-variables is the property call, the variables are declared in
[OCL03, cha. 6.7].

• The scope of invariant or context names is the whole file.

• The scope of result and parameters used in an operational context is the context
itself.

2.7 Exceptions from Undefined Values

Generally, when a subexpression in OCL results in an undefined value the expression
itself results in an undefined value. The binary operation or constitutes an exception.
If one of its subexpressions results in true, the whole expression will result in true.
In order to represent the logical equivalence of a implies b to not a or b, where a,
b ∈ Boolean, we have to extend the originally defined list of exceptions. Therefore
we define that the operation implies always results in true, if a is false or b is true.
This will especially apply if the other subexpression is undefined.

With these clarifications we have a sound basis upon which we build our OCL inter-
preter. We will have to add a minor issue regarding recursion in definition constraints
detailed in chapter 5, which we will postpone here for the sake of clarity.



Chapter 3

Accessing the OCL Context

”Each OCL expression is written in the context of a UML model, a num-
ber of classifiers (types/classes, ...), their features and associations, and
their generalizations. All classifiers from the UML model are types [...]”
[OCL03, p. 8]

OCL is a part of the UML specification. As such, OCL is described in the context of
UML models. The semantics of its concepts and constructs is founded on the UML
metamodel and its elements. To extend this definition and validate OCL constraints
on arbitrary models, this chapter presents a minimal interface querying the impor-
tant OCL-related information. We therefore dwell on the subset of UML metamodel
elements used in OCL. An implementation of the interface specifies the similarities
of a model and the UML metamodel. This minimal relation of UML and OCL is
throughout used. It suffices for the interpretation of model semantics in the context
of OCL.

Requirements relate to the design of either types or instances and are grouped ac-
cordingly in the interface description. The chapter concludes with a discussion about
design decisions.

10
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3.1 Importing a Model into the OCL Context

The basic idea of extending OCL constraints for a non-UML model is based on the
introduction of a subset of UML concepts in OCL. This subset basically consists of
classifiers, features and instances that are directly related to the corresponding OCL
model types, properties and instances. If we relate the elements of this subset to
the elements of a specified model, we can transitively relate the concepts of OCL to
those of that model. The resulting mappings define a conceptual binding between
the model and OCL as depicted in figure 3.1.

OCL 
context

UML 
metamodel

arbitrary 
model

UML-Model 
Binding

transitive 
binding

OCL-UML 
Binding

Figure 3.1: The Conceptual Model-OCL Binding represents the mapping between
concepts of a model and OCL

Overall the conceptual binding can be used to interpret and validate OCL constraints
on the model. We regard the model as being imported into the OCL context.

3.2 Interface Specification Conventions

We describe our Java interface specifying the requirements defined in [API]. In the
succeeding sections, we concentrate on the description of the included interfaces and
methods. If not otherwise specified, the following will hold in general:

State Information and Transition The state of the model (interface) does not
change, it is instantaneous.
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Security Constraints There are no security constraints.

Range of Valid and Null Argument Values Except the value null , all parame-
ter and return values are valid.

OS/Hardware Dependencies and Serialized Form Section 3.5.2 discusses details
of operation system and hardware dependencies and serialization.

Allowed Implementation Variances Allowed implementation variances are addressed
in section 3.5.1 .

3.3 Type Level Requirements

OCL constraints are built around objects and object properties. Since OCL is a typed
language, each of these objects has a type. Types are grouped in predefined types
and user-defined model types [WA99].

3.3.1 Classifier

The predefined OCL types, especially the type OclAny, represent the foundation of
model types:

“Within the OCL context, the type OclAny is the supertype of all types
in the model and the basic predefined OCL type.” [OCL03, p. 30]

We use this generalization to integrate a model classifier into OCL analogously to a
UML Classifier (s. Listing 3.1, line 2). The predefined behavior of the model’s basic
types, enumerations and other types can then be identified and distinguished by their
OCL supertype. Due to type conformance an assignment of a model’s Boolean type B
to its predefined type describes for instance, that if-clauses can also be parameterized
by B in an OCL expression. Transitivity of the type conformance hierarchy inside the
model is established through the declaration of each classifier’s supertypes (s. Listing
3.1, line 3).
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State and Behavior Traditionally an object is an entity that is defined by state
and behavior [RM-95]. In OCL states are handled by UML state-machines that
are attached to classifiers. The set of states defined on a classifier is represented
through the Operation Classifier.getStates() (s. Listing 3.1, line 5). The
states of an instance can in return be queried in an OCL context with the operation
oclInState(OclState) [OCL03, cha. 5.10].

The behavior of OCL objects is specified by properties or in terms of the UML by
features. Each classifier must declare the set of accessible properties it defines (s.
Listing 3.1, line 4). For further information regarding properties see the following
section which describes them in more detail.

1 public interface Classifier {

2 String getPredefinedSupertype();

3 Classifier[] getSupertypes();

4 Feature[] getFeatures();

5 String[][] getStates();

6 String getName();

7 boolean equals(Object type);

8 }

Listing 3.1: Java interface describing a model classifier

Listing 3.1 shows the Java interface describing a classifier for OCL. In addition to the
type hierarchy required to determine type conformance (line 2 and 3), the behavior
and eligible states of each of its instances (line 4 and 5), identity (line 7) and naming
context (line 6) are declared.

Enumeration

As a special classifier an enumeration can be directly addressed in an OCL context
[OCL03, cha. 4.2]. An enumeration type must therefore be further refined through
the specification of its labels (s. Listing 3.2). A label can then be used to resolve
a specific enumeration from its enumeration type. The label is used in both the
type checking and the evaluation process. The type checker must assert that each
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enumeration and enumeration type is defined. The evaluator uses the label to build
a specific instance. For further information see chapter 5 and 6.

1 public interface Enumeration extends Classifier {

2 String[] getLabels();

3 }

Listing 3.2: Java interface describing an enumeration type

3.3.2 Properties

There are three categories of properties in OCL: attributes, associations and oper-
ations. Each of these properties is specified and therefore identified by its name
(s. Listing 3.3, line 3). In general the name must be unique within the property’s
namespace (e.g. its classifier). In case of operations the signature must additionally
be considered.
The specified name can then be used to resolve a property on a classifier. As we
observe in chapter 5, the OCL model provides more than one level, on which types
can be instantiated. Features can therefore be described on the classifier or instance
level. To distinguish between class-scoped properties and properties that are used
on instances of classes, a property must declare its scope (s. Listing 3.3, line 4). It
is either specified by the constant "instance-level" or "classifier-level" .
The scope can then be used to check if the property is accessible by specific instances
or types.

Attribute

To describe a simple attribute the type of the property must be specified (s. Listing
3.3, line 2). The type information is necessary because every OCL expression evaluates
to a specific object of a specific type. Since the model is closed this type has to be
located in the model and cannot be predefined (cmp. chapter 2.2).
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1 public interface Feature {

2 Classifier getType();

3 String getName();

4 String getScope();

5 }

Listing 3.3: Java interface describing a property

Listing 3.3 shows an interface which abstracts a property. The property is specified by
its name (line 3), has a type (line 2) and is defined either on the instance or classifier
level (line 4).

Association

Associations are special properties in OCL. We treat associations rather as their
association ends than as the associations themselves. Instead of defining associations
in its set of properties, a classifier specifies association ends one may navigate to in
an OCL constraint. Thus a navigable association end is identified by its role name.

Navigation of such association ends can result in a single instance being treated
as a collection [WA99, cha. 3.6.1]. This occurs when associations are navigated via
association ends with multiplicity one or zero. Otherwise navigation results directly in
a collection. In order to make the result type distinguishable, a model must provide
the declared upper multiplicity of an association end (s. Listing 3.4, line 2). The
collection obtained, can however be either a bag, a set or a sequence. A sequence
will only result, if the association is ordered (s. Listing 3.4, line 3).

1 public interface AssociationEnd extends Feature {

2 int getUpperMultiplicity();

3 boolean isOrdered();

4 }

Listing 3.4: Java interface describing an association end

Listing 3.4 shows the abstraction of an association end. The association end is treated
as a property of a classifier. It defines its upper multiplicity (line 2) and whether it is



CHAPTER 3. ACCESSING THE OCL CONTEXT 16

ordered or not (line 3). This information is used to distinguish between collections,
sequences and instances acting as one-membered collections.

Operation

Operations as OCL properties are side-effect free query operations. This implies
that the set of operations of a classifier only contains queries. As part of the UML
an OCL operation of this set is specified through the well-formedness rules of the
type Operation [UML03, p. 2-54]. These rules distinguish operations by name and
signature. This means that the number, kind and order of the operation’s input
parameters must be additionally specified (s. Listing 3.5, line 2). The return types
of operations are not considered.

1 public interface Operation extends Feature {

2 Classifier[] getParameters();

3 }

Listing 3.5: Java interface describing an operation

Listing 3.5 specifies a query operation of a classifier. Besides the features of an ab-
stract property the number, kind and order of the operation’s parameters are declared
(line 2).

3.3.3 Accessing Types

OCL contexts are, as defined in chapter 2.1.1, braced in package-endpackage state-
ments. These specify which package a classifier or a constraint belongs to. The
existence of the package in the model’s package hierarchy can be checked via the
TypeFacade (s. Listing 3.6).

1 public interface TypeFacade {

2 Package[] getAllPackages();

3 }

Listing 3.6: Java interface describing an access point to the type level
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A package can then be resolved through its qualified name (s. Listing 3.7 line 3). In
combination with the Package interface the TypeFacade provides an access point
to the model’s type system from the perspective of OCL (s. Listing 3.7, line 2).

1 public interface Package {

2 Classifier[] getContents();

3 String[] getQualifiedName();

4 }

Listing 3.7: Java interface describing a package

3.4 Instance Level Requirements

OCL constraints are contextually defined for types. We assume that a constraint
defined on a type will be satisfied if the constraint is satisfied for every instance of
that type. To validate constraints an evaluator therefore has to access the instance
level of a type.

3.4.1 Access to the Instance Level

In OCL the extent of instances of a type is defined as “[...] the Set of all instances of
the type in existence at the specific time when the expression is evaluated” [OCL03,
p. 19].

A model can express its instantaneous state and own extent for example to a particular
package through the method ModelFacade.getAllInstances(Classifier) (s.
Listing 3.8). Overall a ModelFacade is a description of a model complying to the
requirements needed to import a model into the OCL context.

1 public interface ModelFacade extends TypeFacade {

2 public Instance[] getAllInstances(Classifier type);

3 }

Listing 3.8: Java interface describing a model facade
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3.4.2 Instance

An instance of a model type inherits the behavior of its predefined parent in order
to fulfill the required type conformance rules [OCL03, cha. 6.4.4]. These encompass
the operations defined by the type OclAny. Although a more general static type of
the instance is given, neither its specific runtime type nor the nature of its predefined
parent is known.

Runtime Types We take a look at the following more general declaration of an
OCL constraint defined on the UML metamodel:

context ModelElement inv :

...

The specified constraint is defined for all elements in the UML metamodel. The
static model type ModelElement of corresponding model instances is specified. But
to evaluate the constraint in the correct context, for example in the context of a UML
Classifier or a UML Feature, the runtime type of these objects must be known.

We therefore discuss the operations of OclAny in detail:

oclIsTypeOf(OclType) This operation and the operation oclIsKindOf(OclType)

cannot be implemented using the static type. We have to assert that instances
provide access to their actual runtime type (s. Listing 3.9, line 2).

oclAsType(OclType) The argument of the operation must be a supertype of the
static type of the instance. The type can be resolved; its property definitions
directly accessed. These must then comply to the rules of this operation, i.e.
dynamic binding may not be used.

oclInState(OclState) If a state-machine is supplied for an instance, an OCL tool
will implement the operation oclInState(OclState) as defined. The state must
then be accessible (s. Listing 3.9, line 3).

Equality Operation (‘=’) The ‘=’ operation and therefore its counterpart ‘<>’ are
directly mapped to the the Java primitive method equals(Object) [j2s03]
(s. Listing 3.9, line 4).
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Other Predefined Parents In case an instance is not directly based on OclAny

the nature of its predefined parent is unknown and cannot be determined via the
information the type level provides. An example can be found in figure 3.2. It depicts

Real Number

??? π

Type Level

Instance Level

Figure 3.2: An example of an undetermined parent

a number π that is related via its type and the conceptional model binding to an
instance of the predefined OCL type Real. To inherit the predefined behavior of its
predefined type, the nature of this instance must be known. But neither the model
instance’s name nor the type level reveal it.
Therefore every model instance has to specify its predefined parent (s. Listing 3.9,
line 5). The representation of the parent is further discussed in section 3.5.2.

Values of Properties To access the values of properties we add the specification
of properties to the instance itself. This allows the separation of type checking
and evaluation. Attributes, associations and operations can therefore be accessed
directly through the instance (s. Listing 3.9 line 7 - 10). If the properties are not
defined on the corresponding type or their execution causes any form of Exception ,
an UndefinedFeatureException and FeatureProcessingException will be
thrown respectively. These exceptions are left out in Listing 3.9 for the sake of
conciseness.

Names of Instances The name of an instance is a String representation that
can be used by OCL tools for reports etc. (s. Listing 3.9 line 6). In case of an
enumeration value it is equivalent to its label. Otherwise an enumeration cannot be
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resolved from its enumeration type when directly specified within an OCL constraint.

1 public interface Instance {

2 Classifier getRuntimeType()

3 boolean isInState(String[] state);

4 boolean equals(Object instance);

5 Object getPredefinedParent();

6 String getName();

7 Instance getValue(Feature attribute)

8 Instance invoke(Operation operation, Instance[] args)

9 Instance[] navigate(

10 AssociationEnd role, String[] qualifiers)

11 }

Listing 3.9: Java interface describing a model instance

Listing 3.9 shows a model instance from the viewpoint of OCL. It describes its pre-
defined parent by specifying its nature (line 5), its state (line 3) and type (line 2).
Combined with its identity (line 4) the predefined parent, in particular the OCL type
OclAny, can be implemented in an OCL tool. This predefined parent is then extended
through the specification of the instance’s model features (line 7 - 10). Eventually
the name of the instance is specified to allow reporting and the construction of enu-
merations (line 6).

3.5 Design Decisions

During the development of this interface several design decisions are made. We
discuss the qualities and the implementation of these choices.

3.5.1 Rejection of Redundancies

The interface does not contain any superfluous repetition. This affects the perfor-
mance of an implementation. Therefore this chapter should not be understood as
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an approach to describe an interface for practical usage. The described interface is
rather a minimal set of requirements a model must comply to in order to make use
of OCL in its full extent.

3.5.2 Implementation Independence

One of our objectives is to describe the interface in an implementation independent
way. We accomplish this by using primitive types like String , Boolean or Integer

and their compositions in our description. This also relates to the representation of
predefined types and instances.

Specification of OCL Supertypes Each classifier specifies its predefined super-
type (s. Listing 3.1, line 2). The import of model classifiers in the context of OCL
is therefore restricted to single inheritance. This restriction for primitive types of the
model is based on the presumption that models do not define mixed OCL type equiv-
alents. This allows an OCL tool implementer to resort to an arbitrary OO language
environment.

The Method Classifier.getPredefinedType() describing the predefined par-
ent of the model type is of type String (s. Listing 3.1). The result is defined by
the supertype’s unique OCL name (s. [OCL03, cha. 8]).

Specification of OCL Parents A model instance must specify the nature of a pre-
defined parent. Types of instances map to predefined parents as defined in table 3.1.
The representation can then be used to fully implement the predefined part inherited
by a model instance. Overall the described interfaces are structured primitive types.
The interface can therefore be considered serializable, platform and implementation
independent.
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Instance of type Native representation
Boolean Boolean
String String
Real Double
Integer Integer
OclExpression String
OclState String[]
Enumeration String[]

Table 3.1: Mapping of instances from OCL to Java

3.5.3 Evaluation Independence

Overall this interface definition is based on the semantics of the model and is indepen-
dent of the evaluation of OCL expressions. This implies that implementations of the
model interface conform to OCL. In comparison to the model type implementation
in [Fin00] this is an improvement in correctness and implementation cost of a model
in an adaptable OCL evaluator.

3.5.4 Separation of Type and Instance Level

The interface strictly separates the type from the instance level. This allows an OCL
tool to use a stand-alone context or type checker in case the evaluation of constraints
is omitted.

3.6 Correctness of the Interface

In order to prove the interface conceptually the implemented OCL interpreter makes
use of a similar interface. This interface uses controlled redundance to enhance
performance and reduce implementation cost. However, both interfaces use the same
amount of information. As we observe in chapter 5 and 6, the information is sufficient
to implement an OCL validator. We therefore conclude that the interface is minimal



CHAPTER 3. ACCESSING THE OCL CONTEXT 23

and meets its requirements.

Summary

In this chapter we have successively build a model interface from its type to its
instance level. We have shown that the interface provided is minimal and complete
regarding requirements of OCL to access concepts of a model. We will prove the
interface to be sufficient for the context checking and evaluation process by the OCL
validator reference implementation developed in this thesis.



Chapter 4

Parser

This chapter discusses choices of parser generator technologies to be used in the
implementation of this framework. An initial examination of the grammar provided
in the OCL specification reveals that it belongs to a class of grammars unsuitable for
most parser technologies. We then choose a compiler generator balancing the need
for changes to the grammar with re-use qualities of the final product.

4.1 Parser Families

In the following we assume that the reader is familiar with grammar basics. That
is: regular expressions, context-free grammars, Extended Backus-Naur Form (EBNF).
Quoting [ASU99] we shortly introduce the two main categories of parsing algorithms,
Bottom-Up and Top-Down Parsing:

The basic idea of Bottom-Up parsing is to begin with the concrete
data provided by the input string – that is, the words we have to parse –
and try to build bigger and bigger pieces of structure by reducing corre-
sponding right hand sides of production rules to its left hand sides. The
building process of an abstract syntax tree (AST) begins at its leaves and
is constructed bottom-up to its root, hopefully the start symbol of the

24
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grammar.

Inversely, a Top-Down Parser begins its parse process at the start symbol
as the root and tries to build the abstract syntax tree by unfolding its
production rules until the produced word matches the input string.

In both cases the basic problem is choosing which production rule or
production rule alternative to use at any stage during a derivation. To
make implementation easier, we introduce lookahead as a means of
attempting to analyse the possible production rules that can be applied,
in order to pick the one most likely to derive the current symbol(s) on
the input.

This quality criterion sorts parsers into algorithm families based on their parsing
method: Top-Down parsers belong mainly to the LL(k) family and Bottom-Up parsers
to the LR(k) family.

Parsers of the LL(k) family scan input left to right and derive the parse tree by its
leftmost nonterminal with k tokens of lookahead. LR(k) parser scan input from left
to right but conversely derive its tree by its rightmost nonterminal symbol with k
tokens of lookahead.

4.2 Characteristics of the OCL Grammar

To benefit from a wide range of parser generators, a language or rather its grammar
should be at least LR-parseable. Unfortunately this property does not apply to the
OCL grammar.

4.2.1 Path Name Ambiguity

In the OCL grammar an ambiguity between path names is caused by the production
rules:
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pathName := name ("::" name)*

enumLiteral := name "::" name ("::" name)*

For this reason the grammar in its original form is inappropriate for most parsing
technologies.

Proof by Example. To show that the OCL grammar is not LR-parseable we show
that the grammar is ambiguous [ASU99]. An ambiguous grammar, related to a
parsing algorithm, is defined as a grammar that allows derivation of more than one
parse tree for a specific input. We study the input:

package proof

context Example inv :

primExpr::IsAmbigious

endpackage

This is clearly legal OCL and fits into the following two outlined parse trees:

primaryExpression

literal

"primExpr" "::" "IsAmbigious"

enumLiteral

primaryExpression

propertyCall

"primExpr" "::" "IsAmbigious"

pathName

... ...

Thus the grammar of OCL is, regardless of the order of the lookahead, unparseable
by LR-algorithms. 2

4.2.2 Name-Expression Collision

The next problem is based on the fact that the nonterminal expression can be
derived to the nonterminal name as depicted in figure 4.1.
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expression ...logicalExpression

primaryExpression propertyCall pathName name...

Figure 4.1: The derivation of an expression to a name.

Consider the OCL production rules:

propertyCallParameters :=

"(" declarator? actualParameterList? ")"

declarator :=

name ( "," name)*

(":" simpleTypeSpecifier)?

(";" name ":" typeSpecifier "=" expression)?

"|"

actualParameterList := expression ( "," expression)*

In this set of production rules the production propertyCallParameters is ambigu-
ous for a parsing algorithm part of the LR(k) family with a fixed lookahead of k.

Proof by Contradiction. Take k ∈ N to be a fixed number, ni to be derivable by
the production rule name for all 0 ≤ i ≤ k and w ∈ OCL to be an input of the form:

package proof

context Contradiction inv :

ModelElement::propertyCall(n0, n1, ..., nk)

endpackage

Suppose lr ∈ LR(k) to be an algorithm unambiguously parsing the OCL grammar. To
simplify this, let us assume that lr is a Bottom-Up parser, without loss of generality.

We use induction on k to show the contradiction for every k ∈ N:
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Consider that lr ∈ LR(0) tries to parse the word w. Scanning through the input
with k = 0, lr recognizes after iterative derivations n0 which corresponds to the right
hand side of the production rules declarator and actualParameterList. With
no lookahead available lr clearly cannot decide which production’s right hand side
should be reduced.

We assume that a LR(k)-algorithm cannot unambiguously derive the input n0, n1,
. . . , nk from the production rules declarator and actualParameterList. By
induction we conclude that consequently any lr ∈ LR(k + 1) cannot unambiguously
parse n0, n1, . . . , nk+1 with k + 1 tokens of lookahead. Since the next token ","

or ni of the input n0, n1, . . . , nk+1 can be derived from both, declarator and
actualParameterList, the additional token of lookahead does not bring a decision.

The result is that for every fixed k ∈ N, lr ∈ LR(k) cannot parse the changed OCL
grammar unambiguously. 2

For the sake of completeness we note that consequently the changed OCL grammar
is thus also not LL(k), in particular not LL(1)-parseable, since LL-languages are a
subset of LR-languages [Pep97].

4.3 Improvements towards an LALR(1)-parseable

Grammar

In order to adapt the characteristics of the OCL grammar to our needs, we change
the grammar without changing the language itself.

By removing solely the production rule enumLiteral the ambiguity of path names
described in section 4.2.1 is solved. Also, originated from the production rule literal,
an enumLiteral is then recognized by a parser through the nonterminal pathName
of a propertyCall.

Further changes to the grammar at this point relate to the core expression produc-
tion rule of the grammar (s. section 4.2.2).

Existing OCL parsers for OCL 1.3 – for example the IBM parser reference imple-



CHAPTER 4. PARSER 29

mentation of the OCL specification [IBM03] or a parser framework build at the TU
Dresden [Fin00] – circumvent this problem in different ways:

The IBM parser was generated using the JavaCC compiler generator. Its gram-
mar file shows that the production rule featureCallParameter, later renamed
propertyCallParameter in OCL 1.4, is defined using the JavaCC feature ’LOOKA-
HEAD’. This feature establishes a default lookahead of 2147483647 tokens. One
could argue that practically there won’t be cases where this number could be exceeded,
but theoretically this solution is not only incorrect but also not LL(1)-parseable, as
originally stated in the OCL specification.

The TU Dresden parser, employing on the fact that names are not structurally distin-
guished from expressions, uses expressions for names. The production rule changes
to:

declarator :=

actualParameterList (":" simpleTypeSpecifier)?

(";" name ":" typeSpecifier "=" expression)? "|"

This grammar still recognizes all OCL language constructs.

A parser based on this grammar accepts a larger language than the original grammar
allowed. The TU Dresden Parser makes use of the SableCC parser generator frame-
work [Gag98]. This framework is able to accommodate the workaround introduced
above. Using its ignored alternatives [Gag98, cha. 5.3], we can instruct it to skip
the original problematic production rule alternative in the grammar, but to establish
its node usable for the parsing tree. The initial concrete syntax is built into a parsing
tree. This concrete syntax can still express a larger language than OCL. In a second
phase, the parsing tree is transformed into an abstract syntax tree. During this phase
the offending constructs are identified and rejected.

SableCC produces parsing trees that are based on the Java type system. It additionally
provides a representation of the visitor in combination with the adapter design pattern
[GHJV95]. This allows depth first traversal of the tree [Gag98, cha. 6.4]. We
can easily extend the original parser to transform the concrete syntax tree into the
correct abstract syntax tree. This is achieved by overriding the before methods of the
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adapter (for more details s. cha. 5.2.2). During the parsing process these are called
by the framework each time before a node of the tree is visited, to check colliding
expressions in order to replace them by the expected name’s node. The result is
an AST compliant with the original grammar of OCL.

Comparing the solutions of the IBM parser reference implementation and the TU
Dresden parser, we can conclude that the TU Dresden approach is more efficient,
more stable and so overall more feasible for our problem.

A SableCC version of our grammar can be found in Appendix A. It has been translated
using SableCC and thus is LALR(1) and thereby, since languages based on LALR(1)-
parseable grammars are a direct subset of these derived by LR(1)-grammars, LR(1)-
parseable [ASU99].

Summary

In this chapter, we have discussed an analysis of the OCL grammar for aspects of
usability with existing parsing technologies. We have determined that the grammar is
not LR-parseable regardless of the number of lookaheads. Removal of the ambiguous
production rule enumLiteral has eliminated the first cause of the grammar’s incom-
patibility to LR-parsers. Comparison of existing OCL parsers has led us to work around
the second cause using the SableCC framework. The production rule declarator

has been changed to encapsulate a name into an expression. The resulting concrete
syntax tree can be converted to an abstract syntax tree by using the visitor pattern
provided by our chosen parsing framework. Thus the original OCL grammar that is
not even LR-parseable has turned into an LALR(1)-grammar.



Chapter 5

Context Checker

The next component in the pipe and filter pipeline introduced in chapter 1 is the
context checker. The context checker controls the use of OCL constructs within
the abstract syntax tree produced by the parser. In contrary to the parser, this
examination is not solely based on the syntax, but also on semantics of OCL.

We start by identifying context dependent language features. They correspond to
contextual tests which the context checker implementation must contain.
We further proceed to the primary function of the context checker – the type check.
Before we start to explain the type checking process itself, we analyze the type system
of OCL focusing on its representation in the Java type system [GJS96]. We use the
Java Reflection API to obtain information about predefined types represented by Java
interfaces. Changes to these interfaces allow us to adapt and reflect this part of the
type system within our context checker. Combined with model types described in
a TypeFacade (refer chapter 3.3.3) the implementation of the OCL type system is
completed. The implementation is used to present a type checking algorithm that is
based on the abilities of the chosen parser framework.

31
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5.1 Context-dependent Constructs

Constraints included in this list are more or less directly addressed in [OCL03]. Facing
the inaccuracies of the OCL standard found in the previous chapter 2 and 4 it is
conceivable that other exceptions can occur. The list therefore does not claim to be
complete.

5.1.1 Reserved Keywords

Reserved keywords (e.g. if or context) cannot be used as names of packages, types
or properties [OCL03, cha. 4.8]. Declaring these keywords as tokens in the SableCC
grammar enforces this constraint. It is implied that all tokens within the grammar
must be handled as reserved. A complete list of tokens, including for instance the
added tokens true and false (cmp. chapter 2.1.3), can be found in the provided
SableCC grammar (s. Appendix A).

The grammar does not define the keywords self and result as tokens. In order to
provide a similar treatment without changing the grammar, self and result must be
controlled to be directly derived from the nonterminal propertyCall defined by the
production rule primaryExpression.

A specified property call must in return be a single name (i.e. plain self or result).
This implies that the property call must not be specified by a qualified path name
and must not define the time expression @pre, nor qualifiers or parameters. In case
of result the primary expression must additionally be included in a postcondition.

5.1.2 Primary Expressions

The nonterminal propertyCall in the production rule primaryExpression is used
to specify many different entities and features of OCL. Besides an operation call
or a call on attributes or associations, the production rule propertyCall is used
to describe variables, model types, states, enumerations and the keywords self and
result. Accordingly, this production provides many optional nonterminals that are
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contextually limited concerning the compatibility to individual entities. For this reason
the context checker has to check that parameters are used for operations and qualifiers
for associations only. Property calls may use the time expression @pre. This and the
operation oclIsNew() must then be used exclusively in postconditions. In contrast
to model types, states and enumerations, the names of properties and variables may
not be qualified additionally.

5.1.3 Arrow and Dot Operators

The value of a property of an object is specified by a dot followed by the name of
the property. A property of collections is accessed by using an arrow followed by the
name of the property. To satisfy that both operators are used appropriately, the type
of an object has to be determined by the type checker first. Then the use of the
operator can be checked.

5.1.4 Declarators

“All collection operations with an OclExpression as parameter can have an iterator
declarator.” [OCL03, p. 6-36]. The iterator declarator is undefined for other types
and operations. This must be asserted by the context checker.

5.1.5 Stereotypes

The stereotype of a constraint must be inv in a classifier context and in operational
contexts pre or post.

5.2 Type Checking

“All types defined in a UML model, or predefined within OCL, have a type.
This type is an instance of the OCL type called OclType.” [OCL03, p.
29]
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This statement describes the overall structure of the OCL type system. It defines a
meta, a classifier and an instance-level. The meta level in OCL is represented by the
type OclType. Its instances form the classifier level; these are the predefined and
model types, whose instances in turn define the instance level.

5.2.1 Implementation of the Type System

In order to let our implementation meet the requirements on this three-tier type
system we have to distinguish between the type OclType and predefined and model
types on the classifier and on the instance level respectively.

Predefined Types

To represent the predefined types in our environment we make use of the Java type
system. The signature of the predefined types is described in form of Java Interfaces.
Our type checker then queries this metadata via the Java Reflection API.

Besides the type system, the advantage of using interfaces instead of plain metadata
(e.g. a property file) to describe types lies in the fact that they can be reused in
the implementation of instances which we will introduce in chapter 6. By expressing
the changes in corresponding interfaces and classes, the validator, in particular its
evaluator, after recompilation reflects the modified metadata to its validation process.
This also implies that the adaptability of the validator to changes of the type system
in later versions of OCL is increased. An important factor of this approach is the
power of the Java in comparison to the OCL type system.

Basically we represent an OCL type by a single interface. An interface uses the
inheritance mechanism of Java to represent generalization in OCL. The properties of
the predefined types in OCL are exclusively operations and can therefore be directly
represented by methods, without considering attributes or associations.

Naming Conventions The interfaces are named after corresponding types but
prefixed with Ocl . This avoids Name Clashes with primitive objects from the package
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java.lang .

The names of operations must be partially changed, due to OCL’s use of Java reserved
keywords for its operation names. The following mapping is applied for renaming:

OCL name Java name
= eq
<> neq
+ plus
- minus, negation
∗ multiplication
/ division
< less
> more
<= lessOrEqual
>= moreOrEqual

Table 5.1: OCL operation mapped to Java method names

Redefinitions Another problem of adaptation from the OCL type system to the
Java type system is redefinition of inherited operations. In OCL redefinitions are
covariant [Mey97] as depicted in figure 5.1.

Consider the following example:

1 Real r, r2 = ...;

2 Integer i = ...;

3 r = i;

4 r + r2; // => + : Real x Real -> Real

5 r + i; // => + : Integer x Integer -> Integer

Let the variable r have the static type Real and the runtime type Integer (line
1-3). Although r ’s static type declares the operation + : Real × Real → Real, it is
not defined, because the operation + : Integer × Integer → Integer is dynamically
bound. This is not correct and therefore covariant operation redefinitions exclude the
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Real 
__________ 

+(Real)
Real

Integer 
__________ 

+(Integer)
Integer

return type

return type

Figure 5.1: Covariant inheritance in OCL

use of dynamic binding as supported in Java.

This implies that we cannot directly use the Reflection API to resolve an operation.
Regarding the type hierarchy we determine an operation by an argument’s static type.
In our example the OCL operation + is resolved according to the types of r2 and i

from the interfaces OclReal in line 4 and OclInteger in line 5.

In addition Java will not allow the specification of covariant return types, if the
parameters of an operation are not specialized, as it is the case for the parameterless
operation abs() or ’-’ from Integer. These return types must be programmatically
adjusted. Adaptations to our OCL type system representation are therefore restricted
with regard to redefinition: if a return type of an operation is specialized, then at
least one parameter type will have to be specialized as well.

Collection Types Collection types in OCL are parameterized types. Since the
current Java version 1.4 does not support generics in its type system [JSR01], we
have to expand the type definition to a class Type which at least holds the parameter
type of collection types in addition to the type interface. Unfortunately we cannot
use this class to represent the type information of the parameter within our meta level
interfaces. For instance the declaration of the method

Type abs();

clearly does not reflect the information whether the return type is actually of type
Integer or Real . Accordingly, signatures of methods, especially their collection
parameter and return types, must be programmatically augmented by corresponding
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element types. This adds another constraint to our adaptation process which must be
addressed in each property resolution. In order to abstract from such augmentations,
the type checker internally uses the class Type as the uniform foundation of types
(s. figure 5.2).

Higher Order Functions Formally Higher Order Functions are defined as functions
that are parameterized by functions [Pep99] or in terms of OCL operations that are
parameterized by OclExpressions:

“Each OCL expression itself is an object in the context of OCL. The type
of the expression is OclExpression.” [OCL03, p. 31]

An example for the use of a Higher Order Function in OCL would be a collection
operation call forAll( a, b : Integer | a <> b ). The OclExpression used as
parameter in this example includes in addition to the expression a <> b the optionally
declared iterator variables a and b and their assigned type Integer. The evaluation
type of the expression is the type of its expression (i.e. Boolean). This implies
that each expression in OCL has two types, the expression type and the type it
evaluates to. Therefore it is necessary to introduce a new class ExpressionType

representing the complete OclExpression as an extension to the class Type . This
class can then be used by the type checker to store both the expression type and the
evaluation type of the expression. To resolve an operation, the type checker then has
to query operations twice: the first time as a Higher Order Function (i.e. with the
parameter in form of the expression type) and the second time with the evaluated
type of the expression parameter. Again, the class ExpressionType is an insufficient
representation analogous to the representation of collection types. Evaluation types of
the parameters of the operations collect(OclExpression) and iterate(OclExpression)

are used to declare the return type of the respective operation on the meta level.
Again, these types must be adjusted programmatically.

In summary we conclude that the Java type system is only partially capable of sup-
porting the predefined types of the OCL type system. The following limitations to
the adaptation of our OCL validator must be dealt with:
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• OCL names that can cause Name Clashes or mangle reserved characters or
keywords in Java.

• Redefinitions of the signatures regarding only the return but not the parameter
types of an operation.

• Template parameters of collection types in operation signatures.

• Higher Order Functions in form of operations that declare their signature using
the evaluation type of the expression parameter.

Existing types and operations are not subject to these limitations. Missing information
on the meta level is programmatically adjusted. In the current version of the validator
this information is directly encoded in the implementation. Although this is clearly not
the best approach, finding a better way is beyond the scope of this thesis. This process
is internally hidden through the introduction of the class Type and its subtypes.

Model Types

As shown above the class Type can be used to hide implementation issues of the
type system. We use this to hide the different query techniques used to gather the
information of both the model and the predefined types. Therefore we introduce
the new subtype ModelType . This class adapts a model type to a Type using the
Classifier representation from the model interface (s. chapter 3.3.1).

As the only group of types that defines states and associations, the class ModelType

must be extended to express the state definitions of the model types and the alterna-
tive collection type that will be obtained if an association with multiplicity one or zero
is navigated. Additionally the supertype hierarchy of model types must be adapted
to the conformance rules of OCL [OCL03, cha. 4.4].

Classifier and Meta Level of OCL

In the OCL context classifiers are objects of type OclType. As such, the proper-
ties declared on the type OclType must be defined for these classifiers. Since these
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ModelType 
__________ 

navigated : boolean 

alternative : CollectionType 
definesState(String) : boolean 

Collection Type 
__________ 

 
elementType : Type

ExpressionType 
__________ 

evaluationType : Type 
accumulator : Type 
iteratorVariable : Type

Type 
__________ 

conforms(Type) : boolean 
isInstanceOf(Classifier) : boolean 
equals(Object) : boolean 
getOperation(String, Type[]) : Property 

getStructuralFeature(String, Type[]) : Property 

Classifier 
__________ 

OclType : Classifier

Figure 5.2: The type model diagram depicts the model implementation used in
our OCL validator. It includes the classes Classifier , Type , ExpressionType ,
ModelType and CollectionType .

properties are not defined for the instances of the classifiers, we have to differentiate
between the types themselves and the instances of those types. We therefore intro-
duce a new subclass Classifier of the class Type . This class represents a type
at the classifier level and the class Type a type at the instance level. As a special
classifier the OCL type OclType is included in the class definition of a classifier.

5.2.2 Type Checking Algorithm

The type representation introduced above can now be used in our type checking
algorithm. The nodes of the AST are labeled with types. If there is more than one
type represented by a node, as would be the case in nodes representing operation
parameters, types will be labeled in the order of nonterminals in the corresponding
production rule. We store evolving labels in our parsing environment so that these are
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reusable for the next component in the pipeline of the validator, i.e. the evaluator.

Tree Traversal

The AST is processed with tree-walkers of the SableCC framework. A generated
DepthFirstAdapter walks the tree in a depth-first traversal, calling the respective
before and after methods on entering and leaving nodes [Gag98, cha. 6.4].

case

1. 2. 3. ...

in out

Figure 5.3: The depth-first traversal of a node in the SableCC Framework. The
before (in↓), the visit (case) and eventually the after method (out↑) are called for
every node from left to right.

These methods cause that the traversal can be partitioned into a descending (in↓)
and an ascending phase (out↑). In case this visitation sequence has to be adapted
to the requirements of OCL, we override related visit (case) methods and change the
order of the tree-walker from left-to-right to an order that fits our needs.

For type checking purposes we mainly visit nodes by their after methods in the
ascending phase. Thus the AST is processed bottom-up from left to right.

Cooperation of Visitor Methods

Communication between specific visitor methods – to declare the current type of self

for example – is passed along encapsulated instance variables of the visitor. Thereby
cooperation between visit, before or after methods is enabled.
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Visting a Node

With this skeletal structure of our type checking algorithm we can start at the root
of the AST. While descending the nodes, contextual information is gathered to de-
scribe the current context of each node. Once the bottom of a branch is reached,
it is recursively processed to its root. Each time a node is visited the type label of
its children can be accessed from the environment. Combined with the contextual
information that is shared with nodes visited before, checks related to the current
node can be accomplished. Before ascending to the next node, the current node is
in turn labeled with its calculated type.

Application of the Algorithm

In our implementation this is basically the complete algorithm used for type checking
purposes. While explaining the individual checks of the nodes is too extensive to be
presented here, there are some applications we address in more detail.

Computation of Definition Constraints First Regardless of the specification
order in an OCL file, the properties of definition constraints must be declared before
evaluating invariant constraints. Therefore the depth-first-order of the type checking
algorithm must be adapted. We redefine the visit method of a constraint node to
comply with this order.

Primary Expressions Every construct of OCL described by a primary expression
must be distinguishable by the type checker. Therefore it must be considered that
states, model types and enumerations are all specified by a ::-separated path name
list. In an OCL constraint this name list must be unambiguous in each specified
classifier and package context of a model. A “good guess” is not supported by our
type checker implementation.
In order to make a distinction between a specifier with a list length of one and a
feature name, the leading operators . and → can be used. Because predefined types
do not define structural features, an attribute can then be distinguished from an
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unqualified association by querying the model. An operation is especially discerned
by the mandatory parentheses specified after the operation’s name.

Iterator Variables In contrary to common programming languages, an operation’s
parameter type is not self-defining in the context of OCL. Each collection operation
that is parameterized with an OclExpression implicitly or explicitly declares an iter-
ator variable representing an element of the collection defining the operation. The
parameter type of the collection must be known before the type of this variable and
consequently of the OclExpression can be resolved.
We therefore override the visit methods of postfixExpressions. Thus contextual
information does not need to be exchanged between affected visitor methods. Each
time a property is called, the defining type, the operation name and the parameters
are known and can be individually processed by the visit method. This particularly
includes declarations of iterator variables. We handle these before further descending
into the corresponding OclExpression parameter node (and thereby losing contextual
information).

Recursion in Definition Constraints A let expression allows definition of opera-
tions within the OCL context. In a definition constraint let expressions can then be
used to extend classifiers by “pseudo-operations”. The defined operation is useable
in “the same context where any property of the Classifier can be used” [OCL03, p.
8]. This would consequently include the definition constraint itself, but in contrary to
recursion in postconditions (s. [OCL03, cha. 5.3]) the use in definition constraints is
not explicitly defined. It is unclear if recursion of such operations is intended or the
scope of the operation is badly defined. The latter is more likely; otherwise the prop-
erty could also be used in the same definition constraint before its own declaration.

In keeping with our type checking algorithm, however, we support the recursion of such
operations in a limited way: The optional result type of such an operation must be
explicitly declared. This does not restrict functionality of the feature, only the means
of its declaration. Without this additional constraint the algorithm as described in this
chapter would not be sufficient, because the type check heavily relies on mandatory
type labels on child nodes. This especially holds for property calls, whose types in their
recursive form cannot be resolved until termination. Substantial additional effort in
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form of an additional implementation of a backtracking algorithm would be required,
if the declaration of an operation’s result type was not made mandatory. Therefore
we use this restriction without limiting the possible functionality of the recursion.

Summary

In this chapter we have determined the context dependent constructs the context
checker must control.

We have developed a type system implementation. Predefined OCL types have been
implemented on the basis of Java interfaces and the Java Reflection API. The advan-
tage of this approach is that changes to the predefined types of OCL can be expressed
in form of this metadata and in particular in form of its functionality. After a recom-
pilation these can be directly mapped into the type check and the evaluation process
of the validator. By comparing the OCL and Java type systems we have concluded
that this adaptation process is limited in its expressiveness.

These restrictions have led us to build an abstraction layer in form of the class Type

and its subclasses, in order to hide the concrete querying of type definitions from
the type checker. The abstraction layer has been in particular useful to integrate our
model interface developed in chapter 3. The types can then be represented on the
instance, the classifier and the meta level of the OCL type system.

Finally we have used the developed types in a type checking algorithm that is based
on type-labeling on respective nodes. The algorithm has been designed employing
abilities of the generated parser framework. It is implemented in our context checker,
so that labels can be reused by the evaluation component presented in the next
chapter.



Chapter 6

Validation of OCL Constraints

OCL constraints are validated against models on the instance level. Specified in-
stances and properties of metamodel types are accessed to evaluate expressed con-
straints. Evaluation results can be used to validate the correctness of a model. In
this chapter an evaluator for OCL constraints is developed. Applicability of compila-
tion and interpretation as alternate evaluation techniques are shortly discussed. The
implementation of an interpreter is presented. The model interface is extended to
make evaluation results accessible.

6.1 Compiler vs. Interpreter

There are two classes of techniques feasible to evaluate OCL constraints. Compil-
ers compile constraints to code. The code is executable and validates respective
constraints against model instances. Interpreters evaluate constraints by processing
respective ASTs. For both techniques a finite and immutable description of a model
and its instance at a specific moment is required.

Interpreting a constraint is less efficient than the execution of a compiled constraint.
But compilation is cost intensive (cmp. [Pep97, cha. 5.1]). Thus interpreters are
more suitable for changing or variable constraints. Compilers in contrary are more
efficient with respect to fixed constraints.

44
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During the development process of a model, UML Profiles and metamodel constraints
are generally static. Thus compilers are actually more efficient in terms of our objec-
tives. But implementation costs involved in such an approach are beyond the limits
of this thesis (cmp. [Fin00, cha. 7]). For this reason an interpreter is developed for
evaluation purposes.

6.2 Processing the AST

The interpreter processes an AST using the tree-walkers of the SableCC framework (s.
chapter 5). The evaluation of invariant, pre and postcondition constraints is discussed.
Identified node traversal recursions lead us to an evaluation algorithm similar to the
type checking algorithm in chapter 5.2.2. Special issues of the evaluation process are
discussed in more detail.

6.2.1 Evaluation of Invariant Constraints

Constraints in OCL are specified as boolean expressions defined in the context of
model classifiers. Invariant constraints parameterize these expressions with self (s.
listing 6.1). To show the correctness of such a constraint, the expression must be
evaluated for every instance of the contextual classifier.

context AClassifier inv constraint:

-- AClassifier.allInstances()->forAll(self | expression)

expression<AClassifier>

Listing 6.1: A parameterized pseudo OCL invariant

On the basis of a finite model it can be assumed that this set of instances is finite.
Thus the corresponding set of expressions can be evaluated in finite time.
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6.2.2 Evaluation of Pre and Postconditions

A pre or postcondition is additionally specified in the context of an operation. A
corresponding expression is parameterized with the contextual classifier and the return
or parameter types of this operation respectively (s. listing 6.2).

context Classifier :: Operation (P1, P2, ... , Pn): R

-- Classifier x P1 x P2 x ... x Pn ->

-- forAll( (self, p1, p2, ... , pn) | expression )

pre : expression<Classifier, P1, P2, ... , Pn>

-- Classifier x R x P1 x P2 x ... x Pn ->

-- forAll( (self, result, p1, p2, ..., pn) | expression)

post : expression<Classifier, R, P1, P2, ... , Pn>

Listing 6.2: Pseudo OCL parameterizing pre and postconditions

The incorrectness of instance models can not be directly inferred from evaluated
expression results. A violated pre condition for all possible arguments will not imply
the violation within a concrete model instance, if the respective operation is never
called with the offending argument. The interpreter evaluates all arguments, though.
A model instance will be defined to be correct, if every precondition holds under
all possible assignments from well-typed elements of the model. Violations must be
individually determined using results with respect to specific arguments.

6.2.3 Interpreter Algorithm

By accessing the instance level via the model interface our instantaneous evaluator
obtains the immutable description of model instances. The description is used to
interpret constraints with a SableCC visitor. Analogously to the preceding context
checker traversal, this visitor generally processes an OCL constraint AST bottom up
from left to right (s. chapter 5.2.2). It is recursively executed for all instances of
involved parameters as introduced in section 6.2.1 and 6.2.2. The process is supported
by the static types and properties determined in the context check.

Analogously to the type system implementation in chapter 5.2.1 we use an abstraction
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that hides differences between objects of the model and predefined instances (s. figure
6.1). The resulting interface provides uniform means to access the runtime type, the
specific value or among others the properties of an instance (cmp. chapter 3.4.2).

Instance 
__________ 

getRuntimeType() : Type 
getRepresentation() : Object 
getValue(Attribute) : Instance 
invoke(Operation, Instance[]) : Instance 
navigate(Association, Instance[]) : Instance 

Figure 6.1: The instance abstraction.

During the evaluation process it is recursively used to label instances on respective
nodes using our environment. Overall the algorithm is similarly defined to the type
checking algorithm in 5.2.2.

6.2.4 Evaluation of OCL Features

Since discussing the evaluation of all OCL features is too extensive, we discuss the
evaluation of some more intricate features like Higher Order Functions, undefined
values or operation precedence.

Higher Order Functions

As mentioned in chapter 5.2.1 Java does not support Higher Order Functions in its
current version 1.4. Thus we have to evaluate these differently from other operations.

In the context of OCL a Higher Order Function is defined on a collection instance
parameterized with an OclExpression. The evaluation of the argument expression
depends on the context (e.g. the collection’s instances, scopes of let expressions etc.).
The interpreter stores this contextual information in the visitor’s instance variables and
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its environment. This information has to be passed to the calling collection instance
when Higher Order Functions are invoked (s. figure 6.1). The introduction of the
class ExpressionInstance circumvents this. An expression instance encapsulates
expression evaluation results for individual combinations of iterator variables. These
results are calculated in the visitor itself and can be accessed by respective collection
instances. A collection instance defines its provided Higher Order Functions with
respect to obtained result types.

Example The operation forAll is a Higher Order Function (∗) in the OCL expres-
sion:

Set{1, 2, 3}︸ ︷︷ ︸
collection

. forAll︸ ︷︷ ︸
∗

(a, b|a <> b︸ ︷︷ ︸
OclExpression

)

The example’s argument expression must be evaluated for all combinations of iterator
variables (a, b) ∈ {1, 2, 3} x {1, 2, 3}. The interpreter calculates the expression’s
results:

a 1 1 1 2 2 2 3 3 3

b 1 2 3 1 2 3 1 2 3

result false true true true false true true true false

The collection instance joins the individual results according to the definition of forAll

and returns false. This process is independent of passing contextual information.

Exceptions and Undefined Values

During the evaluation of operations unanticipated exceptions, especially undeclared
runtime exceptions, can occur. Respective operation results and expressions are un-
defined. The interpreter skips the evaluation of the current constraint. Exceptions
of undefined expressions for the operations and, or and implies are reported. Con-
straints which have been skipped completely are marked as undefined. Because OCL
is a side-effect free language, this procedure is feasible.
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Enumerations

In OCL enumerations can be specified by name. To resolve enumerations we have to
assert that enumeration names are unique within an enumeration type (cmp. chapter
3.3.1). An enumeration is then identified analyzing all instance names of a specified
enumeration type.

Precedences

Although operation precedences [OCL03, cha. 6.4.6] do not influence our type check,
the evaluation order of combined features is changed. Most precedences are imple-
mented in the grammar [OCL03, cha. 3.9] and thereby are subsequently observed
by the evaluation visitor and interpreter. Logical and relational operations pose an
exception. We thus extend our grammar with respect to the precedence of the
operations implies, = and <>. The productions rules booleanExpression and
compareableExpression are added. They are nested within the production rules
logicalExpression and relationalExpression respectively:

logicalExpression := booleanExpression

( impliesOperator

booleanExpression

)*

booleanExpression := relationalExpression

( booleanOperator

relationalExpression

)*

relationalExpression := compareableExpression

( equationOperator

compareableExpression

)?
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compareableExpression := additiveExpression

( compareOperator

additiveExpression

)?

This enables the interpreter to still visit the AST bottom-up from left to right without
the requirement to sort individual properties.

Time Expression

The time expression @pre describes values before the execution of an operation.
Every operation in the context of OCL is a side-effect free query operation. Thus this
feature does not effect the value of an instance and therefore is not considered by the
interpreter. The construct is rather understood as a concept for modeling purposes
than a feature subject to concrete evaluation.

6.3 Output

Analogously to the abstraction layer of the model, we outline an implementation in-
dependent set of information to describe the output of an OCL constraint evaluation.

To access the results of individual constraints, the model interface from chapter 3 is
extended. Contexts of invariants can be accessed by model classifiers (s. Listing 6.3,
line 2), contexts of pre and postconditions by their operational context (s. Listing
6.3, line 3).

1 public interface Report {

2 Context getContext(Classifier classifier);

3 Context getContext(Classifier classifier,

4 Operation operation); }

Listing 6.3: A validation report based on the model interface
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Individual constraints specified in a context can then be accessed either by its position
in the context (s. Listing 6.4, line 2) or if specified by its name (s. Listing 6.4, line
3).

1 public interface Context {

2 Constraint[] getConstraints();

3 Constraint getConstraint(String name);

4 }

Listing 6.4: A Context interface as a sequence of constraints

The actual results of invariant, pre and postcondition constraints are parameterized
(s. 6.2.1 and 6.2.2). The results can thus be queried individually (s. Listing 6.5, line
3) or in general (s. Listing 6.5, line 2). A result is described by one of the three
states: "satisfied" , "unsatisfied" or "undefined" .

1 public interface Constraint {

2 boolean isSatisified();

3 String[] getResult(Instance[] args);

4 }

Listing 6.5: The Constraint interface described as a set of results

In total this extended model interface represents an interface to query OCL validators
in an implementation independent way.

Summary

This chapter has developed and implemented an interpreter for OCL constraints.
Based on the model interface, the interpreter accesses the instance level of a model
to evaluate constraints. Results of interpreted constraints have been represented in a
model interface extension. The extended model interface is suitable to validate OCL
constraints against models implementation independently.



Chapter 7

The MOF Bridge

Now that we developed an OCL context checker and evaluation component on the
basis of an abstract model, we proceed by extending this model to the MOF Model.
Therefore we have to align MOF to UML metamodel elements with respect to the
OCL concepts. With the resulting conceptual binding we obtain a semantical defi-
nition of OCL constraints in the context of the MOF Model and its instances. The
interpretation of these constraints on MOF compliant metamodels is realized by ex-
tending our validation framework through a MOF Bridge. Based on the MOF tech-
nology mapping for Java, it acts as a ModelFacade for MOF (s. chapter 3.4.1). An
implementation of this Java mapping is eventually used to build a validator for OCL
constraints on the MOF Model itself.

7.1 Accessing the MOF Model

Based on a traditional four layered metadata architecture, the MOF forms the foun-
dation to describe the structure and semantics of metamodels. The layers of this
architecture consist of the MOF Model at the M3, metamodels at the M2, model
instances of these metamodels at the M1 and applications at the M0 level (s. figure
7.1).

The MOF Model provides a set of model elements classifying elements of a meta-

52
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MOF Model

M3 layer: meta-metamodel

M2 layer: metamodels

M1 layer: models

M0 layer

...

...

UML 
Metamodel

IDL 
Metamodel

UML Models IDL Interface

Figure 7.1: “A typical instantiation of the MOF metadata architecture with meta-
models for representing UML diagrams and OMG IDL” [MOF02, p. 2-3].

model. By defining OCL expressions in terms of MOF Model elements, OCL con-
straints can be specified in the context of their metamodel’s instances.

Required semantical and structural properties of these model elements and their in-
stances are queried by using MOF technology mappings [MOF02, cha. 4].

7.2 The MOF-OCL Conceptual Binding

The basic assumption is that in general a MOF Model Element can be bound to
an UML Model Element. We compare the individual model element’s semantics by
using their descriptions and constraints in form of relevant UML well-formedness rules
and corresponding MOF Model Constraints respectively. This comparison leads us to
limitations of a general binding which should be refined for individual metamodels.
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7.2.1 Package

In the perspective of OCL a UML Package provides a way of partitioning and mod-
ularizing space of a model. Among others, it therefore contains other packages and
classifiers. Analogously a MOF Package supports the containment of other packages
(i.e. Package Nesting, Package Import and Package Clustering) and model elements
(e.g. classifiers) at the M2 level. The relevant well-formedness rules of a UML
Package in the context of OCL state, that names of contents of a package may not
collide. This is also required for MOF Packages by the MOF Model Constraint [C-5]
of a Namespace [MOF02, p. 3-90].

Additionally a MOF Package provides an Extent of the classes’ instances at the M1
level [MOF02, cha 3.9.3.5], which can be used as codomain for the OCL property
allInstances() (s. chapter 3.4.1).

By considering this, a MOF Package does not only represent the OCL concept of a
package but also the set of instances each classifier defines.

7.2.2 Classifiers

Although a MOF Classifier defines a conceptual subset of an UML Classifier, the
relevant OCL concepts are the same. That means that a classifier no matter how it
is defined can be specified by its qualified name and is a container for a collection of
features. The specification of classifiers and their features must be unambiguous in
the context of OCL according to the well-formedness rules of a corresponding UML
Classifier. We refer again to the MOF Model Constraint [C-5]. A MOF Classifier
is contained by and is a MOF Namespace containing its features itself. Classifiers’
qualified names and names of contained features can be resolved unambiguous by
following the chain of namespaces.

However, the main difference between these two classifier definitions is that a MOF
Classifier does not define an ownership to a state-machine. Therefore the UML
concept of States as used in OCL cannot be represented in our binding. In case
a MOF compliant metamodel specifies its own state, the general binding of a MOF
Classifier to an UML Classifier must be refined within the respective concrete binding.
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MOF Type OCL Type
Package Package
Classifier Classifier
Enumeration Type Enumeration
Boolean Boolean
Integer Integer
Long Integer
Float Real
Double Real
String String
Alias Type same as of its base type
Collection Types Classifier

Table 7.1: Corresponding MOF and OCL concepts

7.2.3 Enumeration Types

As a special classifier, a MOF Enumeration Type is related to an UML Enumeration.
Although MOF enumerations are specified by labels instead of an UML Enumeration
Literal’s name, it is equivalent to the UML Enumeration. In the context of OCL it
can be uniquely specified by its name. Therefore we can bind the MOF Enumeration
Type to an UML Enumeration without loss of generality.

7.2.4 Primitive and Alias Types

The MOF primitive types are directly represented by their UML and OCL equivalents
respectively. A detailed compilation can be found in Table 7.1.
In MOF the list of primitive types is supplemented by MOF Alias Types. These are
types that are based on other data types, but “may convey a different “meaning” to
that of its base type” [MOF02, p. 3-36]. An Alias Type is recursively bound to the
corresponding concept of its base type.
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7.2.5 Collection Types

Since there are no collection types in UML and the OCL inheritance hierarchy in
relation to the OCL type OclAny does not allow a model type to subtype an OCL
collection type, the MOF collection types must be handled as UML Classifiers instead
of OCL collection types. Note that OCL collections containing MOF collections (and
vice versa) are therefore not flattened [OCL03, cha. 6.5.13].

7.2.6 Features

MOF Operations, Attributes or Associations correspond to respective UML Operation,
Attribute and Association model elements on the classifier and on the instance level.

Most of the well-formedness rules specify boundary conditions that are not relevant in
this context. Feature names have to be unambiguous within a classifier. In MOF clas-
sifiers are special namespaces containing features. Again, the MOF Model Constraint
[C-5] is applied for clearness.

Additionally, MOF Features allow to specify a multiplicity. This implies that attributes
and operations can also have multiplicities greater or less than one. In both cases OCL
does not define how to proceed, because the UML metamodel asserts that this value
is a single value of a particular type. We therefore have to disregard the multiplicity
specification in the general binding and delegate it to a validator implementation for
a specific metamodel.

MOF Features/Associations OCL Properties
Operation Operation
Attribute Attribute
Association Association
Association End Association End

Table 7.2: MOF Features and Associations in relation to UML/OCL concepts

UML Associations or Association Ends possess a multiplicity specification. Thus
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MOF Associations are not constrained with regard to this concern. However, UML
well-formedness rules define in contrast to the MOF Model, that an Association End
must have a unique name within an Association. Though MOF does not demand
this, its associations are defined to be binary. Starting at a particular association
end, the navigation via the other association end’s name is unambiguous. Thus MOF
Associations and Association Ends can be bound without limitation to respective
UML Associations and Association Ends.

This conceptual binding of MOF and UML is transitively used to bind MOF and OCL
concepts (s. table 7.1 and 7.2). In general the following differences between MOF
and UML cannot be generically resolved:

• MOF Packages additionally specify extents of M1 model instances

• MOF Classifier do not specify state-machines

• MOF Collection Types are not represented as collections

• MOF Attributes and Operations define multiplicities

7.3 Bridge Implementation Based on the JMI

In order to apply the MOF-OCL binding in our validator, we have to represent the
metadata of a MOF compliant metamodel. This is done by using the Java mapping
for MOF.

7.3.1 The Java Metadata Interface

The Java Metadata Interface (JMI) [JSR02] is a platform-specific MOF API for Java.
It includes two groups of interfaces. The first group is related to the static structure
of a metamodel. It describes the metamodel’s elements and relations. The second
group represents MOF reflection capabilities. These interfaces can be used to access
a metamodel’s model instance. Overall JMI allows us to discover the nature of
metamodels on the M2 and M1 level independent from semantics.
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7.3.2 Using the Bridge Design Pattern

The MOF concepts described by the JMI are accessed and subsequently classified
to particular OCL concepts. The MOF Bridge therefore implements the validator’s
ModelFacade (s. chapter 3) by interpreting the obtained metadata of a described
metamodel. Following its name, the MOF Bridge is implemented according to the
bridge design pattern [GHJV95]. Thus individual elements of the conceptual bind-

Validator MOF Abstraction 
Layer

Refined MOF Layer

JMI

MDR

Abstract 
Model

Figure 7.2: Simplified diagram of our MOF Bridge

ing and the JMI can be independently subclassed as depicted in figure 7.2. This
decoupling enables refinement of the MOF-OCL binding and at the same time pro-
vides independence of JMI implementation and implementation technology.

7.3.3 Abstraction Layer Realization

In order to give an idea of the implementation of the MOF Bridge, typical access to a
ModelFacade during the validation process is outlined. The MOF Bridge transforms
requests and delegates them to JMI (s. figure 7.3). Requests on metamodels and
instance models must be handled in different ways.

Requests on Metamodels The bridge uses the metamodel specific part of JMI
composed by the so called ModelPackage to access the type level of OCL con-
straints. To obtain a specified package, its qualified name has to be resolved. There-
fore the MOF Bridge applies the conceptual binding to transform the MOF Package
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mofFacade 
(MOF Bridge)

mofMetadata 
(JMI)

request( OCL/UML concept )

request( MOF concept )

response( MOF concept )

validator

response( OCL/UML concept )

Figure 7.3: Sequence of MOF Bridge translations

representation MofPackage to a Package of our model interface and vice versa.
This allows to access the package hierarchy of the metamodel from ModelPackage .
By following the subsequent containers according to the specified name list, the pack-
age is resolved. The set of contained Classifiers is used to obtain OCL model
types specified for instance in constraint contexts. If a classifier is found, the bridge
will again translate the corresponding concepts. Contained properties and subsequent
other concepts are queried in the same way. Overall, the whole type level is translated
elementwise according to the presented binding and thus is accessible in the context
of OCL.

Note that the MOF Bridge implementation uses a variant to represent association
ends. Based on the analogous meaning of MOF References and Association with
respect to navigation [MOF02, cha. 3.9.3.1], the implementation uses references
instead of association ends for performance reasons.

Requests on Instance Models Scopes of OCL constraints are model classifiers
and their instances. The instance level of a classifier is accessed within the evaluation
process via the reflective module provided by the JMI.

In MOF, classifiers are subtypes of RefObject defining the reflective operation
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refAllObjects(Boolean) [MOF02, cha. 6.2.3]. This operation returns the “the set
of all Instances in the current extent whose type is given by this object’s Class”
[MOF02, 6-11].

Unfortunately this operation is not supported by JMI’s reflective API. We circumvent
this problem by accessing the metamodel’s outermost reflective representation of a
package RefPackage and use the method refAllPackages() to obtain the set
of all packages. By calling refAllClasses() on these RefPackages we receive
all classes contained in the whole metamodel. The searched instances can then be
obtained with the operation refAllOfClass() returning all instances of particular
classes and respective subtypes.

Features of instances can then be accessed and executed via the interface RefFeatured .
The nature of resulting predefined parents (s. chapter 3.4.2) is obtained from JMI
Java representations [JSR02, cha. 4.3].

For further information about the MOF Bridge and in particular its refinement, the
reader is referred to the implementation and its API.

7.3.4 MDR-based MOF Model Support

Until now the MOF Bridge is defined and implemented independently of the choice
of JMI technology. In order to use and represent specific metamodels for validators,
the JMI compliant Meta Data Repository (MDR) [MDR03] is used.

MDR imports MOF instances described by XMI into its repository. Any MOF meta-
model loaded into the MDR can be instantiated at runtime. The resulting JMI
representation is used to exemplify the implementation of a concrete MOF Model
OCL validator.

By importing the self-describing MOF Model using its XMI-description into the MDR
we obtain its metadata in form of a JMI ModelPackage implementation. Further-
more a model instance must be imported in a specified MOFPackage. The resulting
metamodel and instance extent represents sufficient information for our MOF Bridge
and validator. In total this allows us to validate M2 level constraints such as MOF
Model Constraints [MOF02, cha. 3.9] against M2 metamodels.
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Summary

In this chapter a general binding describing the differences and similarities between
the MOF and UML metamodel in terms of OCL has been developed. The resulting
conceptual binding has been realized in the MOF Bridge. It translates metadata
of M2 metamodels obtained from the JMI MOF Mapping to information required
by our abstract model. This extension to our validator has been demonstrated by
implementing the self-describing MOF Model using the MDR.



Chapter 8

Validation of UML Extensions

The UML metamodel is defined as an instance of the MOF Model. As such it
is supported by our validator. This chapter uses the MOF Bridge to adapt the
validation framework to the needs of this metamodel. Therefore the MOF Bridge’s
conceptual binding is refined. It is constructed using MDR metadata representing
UML metamodel versions. This implementation enables validation of UML Profiles.

8.1 The UML Metamodel as Instance of the MOF

Model

The UML metamodel in its varying versions is an instance of the MOF Model. Thus
it is accessed by the validation framework using the MOF Bridge. The MOF Bridge
uses a general conceptual binding that is refineable through its bridge implementation.
This is used to adapt the MOF Bridge to the needs of the UML metamodel.

Chapter 7.1 indicates four issues subject to refinement: extents, collection types,
states and multiplicity specifications of attributes and operations.

• The implementation limits the extent of a model instance to the UML meta-
model package “UML”.
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• Collection types do not exist in the UML metamodel.

• Although the UML defines states the UML metamodel versions are stateless.

• The UML metamodel does not possess operations.

Thus we do not have to refine the MOF Bridge in respect of collection types, state-
machines and multiple or non existing return values and arguments.

This, however, does not apply to attributes in UML. An example of a multivalued
attribute can be found within the model element Stereotype. It defines the attribute
baseClass representing a set of names. In order to support this kind of attributes we
have to redefine the MOF Bridge.

An UML Attribute is an instance of a MOF Attribute. The MOF Bridge thus tran-
sitively binds an UML Attribute to an OCL Attribute according to the general con-
ceptual binding (s. chapter 7.2). The general binding of MOF Attributes is set
from attributes to associations. The refined validator thus handles attributes with
multiplicity specifications unequal to one as associations. A multivalued attribute
then returns a collection of instances, a singlevalued attribute an instance acting as
collection and an undefined attribute an empty collection.

After defining the concrete binding of our MOF Bridge, we import the UML meta-
model using its XMI representation into the MDR MOF Repository. As a placeholder
for current and future UML metamodel versions, we use the resulting metadata to
discover the structure and semantics of the most commonly used UML Metamodels
– the versions 1.3 and 1.4. This implementation checks OCL M1 level constraints
like UML well-formedness rules against respective model instances.

8.2 Validation of UML Profiles

A Profile is a specialized package containing a set of UML Stereotypes, Tag Defini-
tions and Constraints located in the extension system of the UML. Using stereotypes
and tagged values the semantics of a model element of the UML metamodel can be
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narrowed to the requirements of a particular domain. The semantics of such special-
ized model elements are defined by constraints. The subset of OCL constraints can
be extracted to a file conforming to the OCL grammar. The framework extension for
UML checks and evaluates this file in the context of the metamodel and a model in-
stance. Thus this framework implementation validates OCL constraints for the UML
Profiles extension mechanism.

Summary

This chapter has refined the MOF Bridge to the needs of the UML metamodel by
handling non single attributes as associations. The resulting interpreter validates OCL
Constraints defining semantics of UML Profiles for domain specific model instances.



Chapter 9

Conclusion

As introduced in chapter 1, a validator for UML Extensions has been developed
and implemented. Therefore OCL has been adjusted with respect to inconsistencies
and inaccuracies. A model interface has been developed describing arbitrary model
elements in terms of UML model elements. This description has been transitively used
to bind respective model elements to concepts of OCL. The interface has allowed to
define and interpret OCL constraints on arbitrary models.

Based on this interface, an extensible interpreter framework has been developed. It
chains a parser, a context checker and an interpreter. To use common parser and
compiler generator technologies, the original OCL grammar has been adjusted to an
LALR(1)-parseable grammar. Based on the SableCC framework, a corresponding
parser has been generated. Context dependent OCL features are checked on pro-
duces ASTs in the context check. A type system abstraction has been developed to
uniformly represent types originated from the model or predefined in OCL. The type
system have been made extensible by describing predefined types via the Java Reflec-
tion API. During the type check resolved types has been stored in an environment.
The interpreter reuses these types in the evaluation process of constraints. Analogous
to the type check an evaluation algorithm has been defined. The model interface has
been extended to access the results of evaluated constraints for validation purposes.

The abstraction layer of this interpreter framework has then been implemented with
semantics of MOF model elements obtained from the JMI. The resulting MOF Bridge
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extends the framework to support OCL constraints defined on MOF compliant meta-
models. The bridge has been refined to the needs of the UML metamodel. This
allows to support this metamodel in its varying versions. The MDR MOF repository
has been used as an implementation of the JMI. By importing corresponding XMI
representations into the MDR, a validator for the MOF Model and the UML meta-
model version 1.3 and 1.4 has been realized. The latter subsequently supports UML
metamodel extensions in form of UML Profiles defining OCL constraints.

Outlook

While this thesis has been developed standards have progressed. The UML speci-
fication and in parallel the MOF standard are advancing to version 2.0. The UML
and MOF 2.0 infrastructure are developed to share a common core. Analogously to
the binding mechanism developed in this thesis, the resulting similarities provide the
means to use a subset of OCL on MOF compliant metamodels. As of now, the sixth
revision of OCL 2.0 does not specify the exact extent of related OCL concepts [ocl04,
cha. 14]. By implementing the final relation in the model interface, this framework
can be used to test and support the subset of OCL features in the boundaries of OCL
1.5. Depending on this extent an OCL 2.0 validator should match the capabilities of
this framework with respect to MOF compliant metamodels.

‘‘Change does not necessarily assure progress, but progress implacably
requires change. Education is essential to change, for education creates
both new wants and the ability to satisfy them.”
– Henry Steele Commagert.



Appendix A

SableCC Grammar

In SableCC productions do not allow the use of parenthesis. The offending grammar
productions are unfolded to avoid this problem. The resulting grammar expansion
does not change the language itself [Pep97]. This grammar complies to the changed
grammar introduced in our thesis and therefore possess its addressed characteristics.

Package de.tuberlin.cs.cis.ocl.parser;

Helpers

unicode_character = [0..0xffff];

ascii_letter = [’A’ .. ’Z’] | [’a’ .. ’z’];

digit = [’0’..’9’];

ht = 0x0009; // tab

lf = 0x000a; // linefeed

ff = 0x000c; // formfeed

cr = 0x000d; // carriage return

sp = ’ ’; // space

line_terminator = lf | cr | cr lf;
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/* name: String - "To minimize portability problems use names

* that start with ASCII letter, and consist of ASCII letters

* and digits, space and underscore." [MOF02, p. 3-16]

* Seems rational, done! But spaces won’t be allowed for

* parsing reasons.

*/

char_for_name_top = ascii_letter | ’_’;

char_for_name = char_for_name_top | digit;

/* This helper is actually not needed because of our

* definition of char_for_name and char_for_name_top helper,

* but for the sake of completness as helper function.

*/

inhibited_chars = ’ ’ | ’"’ | ’#’ | ’’’ |’(’ | ’)’ |

’*’ | ’+’ | ’,’ | ’-’ | ’.’ | ’/’ |

’:’ | ’;’ | ’<’ | ’=’ | ’>’ | ’@’ |

’[’ | ’\’ | ’]’ | ’{’ | ’|’ | ’}’;

input_character = [unicode_character - [cr + lf]];

Tokens

/* For a given input, the longest matching token will be

* returned by the lexer. In the case of two matches of the

* same length, the token listed first in the specification

* file will be returned. Thus identifier should be the last

* token in order to avoid failures.

*/

white_space = (sp | ht | ff | line_terminator)*;

end_of_line_comment = ’--’ input_character* line_terminator?;
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set = ’Set’;

bag = ’Bag’;

sequence = ’Sequence’;

collection = ’Collection’;

dot = ’.’;

arrow = ’->’;

not = ’not’;

mult = ’*’;

div = ’/’;

plus = ’+’;

minus = ’-’;

context = ’context’;

pre = ’pre’;

post = ’post’;

inv = ’inv’;

def = ’def’;

equal = ’=’;

n_equal = ’<>’;

lt = ’<’;

gt = ’>’;

lteq = ’<=’;

gteq = ’>=’;

and = ’and’;

or = ’or’;

xor = ’xor’;

implies = ’implies’;
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l_par = ’(’;

r_par = ’)’;

l_bracket = ’[’;

r_bracket = ’]’;

l_brace = ’{’;

r_brace = ’}’;

semicolon = ’;’;

dcolon = ’::’;

colon = ’:’;

comma = ’,’;

at = ’@’;

bar = ’|’;

ddot = ’..’;

if = ’if’;

then = ’then’;

else = ’else’;

endif = ’endif’;

boolean_literal = ’true’ | ’false’;

let = ’let’;

in = ’in’;

package = ’package’;

endpackage = ’endpackage’;

number_literal =

digit (digit)* // integer

( ’.’ digit (digit)*)? // decimal

( (’e’ | ’E’) (’+’ | ’-’)? digit (digit)* )? // exponent

;
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string_literal =

’’’

([[[unicode_character - [cr + lf]] - ’’’] - ’\’]

| ’\’

(

// escape sequences

’n’ | ’t’ | ’b’ | ’r’ | ’f’ | ’\’ | ’’’ | ’\"’

// octal escape

| ([’0’..’7’] ([’0’..’7’] ([’0’..’7’])?)?)

)

) *

’’’

;

identifier = char_for_name_top char_for_name*;

Ignored Tokens

white_space, end_of_line_comment;

Productions

/*************************************************************

file structure and constraint declarations

*************************************************************/

ocl_file = ocl_package+;

ocl_package = package package_name constraint* endpackage;

package_name = path_name;
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// changed: replaces ’oclExpressions’

// kleenex operator relocated to ’oclFile’.

constraint = context_declaration context_bodypart+;

context_bodypart =

{definition} def name? colon let_expression* |

{constraint} stereotype name? colon ocl_expression;

context_declaration = context context_kind;

context_kind =

{operation} name dcolon context_operation_name l_par

formal_parameter_list r_par return_type? |

{classifier} name classifier_type?;

return_type = colon type_specifier;

classifier_type = colon name;

stereotype =

{pre_condition} pre |

{post_condition} post |

{invariant} inv;

// changed: re-use of the predefined operator-productions (3)

context_operation_name =

name |

{logical} logical_operator |

{relational} relational_operator |

{add} add_operator |

{multiply} multiply_operator;

formal_parameter_list = param_list?;

param_list = formal_parameter next_param*;

formal_parameter = name type_postfix;

next_param = comma formal_parameter;
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/*************************************************************

expressions

*************************************************************/

ocl_expression = let_declaration? expression;

let_declaration = let_expression* in;

let_expression = let name let_parameter_list? type_postfix?

equal expression;

let_parameter_list = l_par formal_parameter_list r_par;

type_postfix = colon type_specifier;

if_expression =

if [condition] : expression

then [then_branch] : expression

else [else_branch] : expression endif ;

expression = logical_expression;

// changed: boolean operators have higher precedence than the

// implies operator (8)

logical_expression = boolean_expression implication*;

implication = implies_operator boolean_expression;

// added (8)

boolean_expression = relational_expression boolean_operation*;

boolean_operation = boolean_operator relational_expression;

// changed: compare operators have higher precedence than

// the ’=’ and ’<>’ operators(9)

relational_expression = compareable_expression equation?;

equation = equation_operator compareable_expression;
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// added (9)

compareable_expression = additive_expression comparison?;

comparison = compare_operator additive_expression;

additive_expression = multiplicative_expression addition*;

addition = add_operator multiplicative_expression;

multiplicative_expression = unary_expression multiplication*;

multiplication = multiply_operator unary_expression;

unary_expression =

{prefixed} unary_operator postfix_expression |

postfix_expression;

postfix_expression = primary_expression property_invocation*;

property_invocation =

{object} dot property_call |

{collection} arrow property_call;

primary_expression =

{collection} literal_collection |

{literal} literal |

{property_call} property_call |

{parenthesed} l_par expression r_par |

{if} if_expression;

time_expression = at pre;
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/*************************************************************

property calls

*************************************************************/

property_call = path_name time_expression?

qualifiers? property_call_parameters?;

property_call_parameters =

l_par declarator? actual_parameter_list? r_par ;

actual_parameter_list = expression next_expr*;

next_expr = comma expression;

// changed: production not LALR(1)-parsable (5)

// workaround: names wrapped by expressions

declarator =

{concrete} actual_parameter_list simple_type_postfix?

accumulator? bar |

(name_list simple_type_postfix? accumulator? bar);

accumulator = semicolon name colon type_specifier equal

expression;

name_list = name next_name*;

next_name = comma name;

simple_type_postfix = colon simple_type_specifier;

qualifiers = l_bracket actual_parameter_list r_bracket;

/*************************************************************

operators

*************************************************************/

// changed: seperation of implies and boolean operators (8)

logical_operator = boolean_operator |

{implicative} implies_operator;
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// added (8)

boolean_operator =

{and} and |

{or} or |

{xor} xor;

// added (8)

implies_operator = implies;

relational_operator =

{equality} equation_operator |

{compare} compare_operator;

equation_operator = equal |

{in} n_equal;

compare_operator =

{gt} gt |

{lt} lt |

{gteq} gteq |

{lteq} lteq;

add_operator =

{plus} plus |

{minus} minus;

multiply_operator =

{mult} mult |

{div} div;

unary_operator =

{minus} minus |

{not} not;
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/*************************************************************

literals and type specifiers

**************************************************************/

type_specifier =

{ocl_any} simple_type_specifier |

{collection} collection_type;

simple_type_specifier = path_name;

collection_type =

collection_kind l_par simple_type_specifier r_par;

collection_kind =

{set} set |

{bag} bag |

{sequence} sequence |

collection;

literal_collection =

collection_kind l_brace collection_item_list r_brace;

collection_item_list = collection_item next_collection_item

*;

next_collection_item = comma collection_item;

collection_item = expression range?;

range = ddot expression;

// changed: enum_literal is left out (6)

// added: boolean literal (7)

literal =

{string} string_literal |

{number} number_literal |

{boolean} boolean_literal;
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/*************************************************************

names

*************************************************************/

name = identifier;

path_name = name_qualifier* name;

name_qualifier = name dcolon;

/* removed: united with name (1)

type_name = identifier */



Appendix B

Zusammenfassung

Die Object Constraint Language (OCL) ist eine formale Sprache, die es erlaubt,
Semantiken in Form von Beschränkungen und Erweiterungen für Modelle und Meta-
modelle zu spezifizieren.

Um die Einhaltung dieser Semantiken überprüfen zu können, wird in dieser Diplomar-
beit ein OCL-Interpreter entwickelt und implementiert. Dieser hat die Aufgabe, auf
der Metamodell-Ebene spezifizierte OCL Constraints der Version 1.5 zu validieren.

Hierfür wird, der klassischen pipe-and-filter Architektur folgend, ein Parser, ein Con-
text Checker und ein Interpreter realisiert. Diese beruhen auf einer abstrakten Modell-
beschreibungsschnittstelle, die es erlaubt, Metadaten eines objektorientierten Mod-
ells im Kontext der OCL zu interpretieren. Diese Beschreibung erweiternd wird eine
Brücke auf Basis des Java Metadata Interfaces entwickelt, die es erlaubt, Semantiken
beliebiger MOF konformer Metamodelle zu validieren.

Als Instanzen des MOF Modells ist es mit diesem Parser-Framework abschliessend
möglich, die verschiedenen Versionen des UML Metamodells in Form von OCL-
Semantiken und Erweiterungen zu interpretieren und zu validieren.
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