Development of an
OCL-Parser for
UML-Extensions

Closure of a Diploma Thesis
Fadi Chabarek

Introduction

* Short explanation of the subject and its
main technologies

* Introduction to the developed solution:
— framework's architecture
— model interface

— parser, context checker, interpreter
— MOF Bridge

Part of the UML

OCL

Semiformal Constraint Language

Supports invariants, pre and post conditions
Constraints are defined for types / model

elements:

context Company inv:

self . numberOfEmployees > 50

context Person::income (d :

post: result =

5000

Util: :Date)

: Integer

Metamodeling

1
MOF Model

M3 layer: meta-metamodel

1 1
UML IDL

Metamodel Metamodel

M2 layer: metamodels

I : I i |
UML Models J IDL Interface

M1 layer: models

MO layer

Connection: UML Profiles

Extension system of UML

Define additional constraints to the UML
Metamodel

Narrow models down to domain specific
requirements

Constraints described through OCL can be
validated

Diploma Subject

* OCL expressions have to be interpreted in the
context of UML Profiles and the UML-
Metamodels 1.3 and 1.4.

* Therefore a ,Parser” has to be developed,
which:

— gets an UML model instance and an UML-Profile as
iInput

— and validates the adherence of the model to OCL
constraints defined by the given UML-Profile

OCL
File

=)

Architecture

XMl

MOF Repository

g

Model Abstraction Layer

Parser |> Context Checker F

Interpreter

Validator

Report

Model Interface

» Abstraction Layer to interpret OCL
constraints in context of arbitrary models

* Designated to be implemented for MOF
compliant metamodels

« Enables support of different versions of
the UML Metamodel

The Interface’'s Basic Idea

e OCL is defined in the

context of UML

+ OCL augments its type UML UML Model arbltrary
system through model [metamodel Binding m
types via UML concepts ocLUML .
(e.g. UML Classifier, Binding binding

Properties etc.).
« Description of these
concepts in a model

define the model‘'s OCL
semantics

Structure of the Model Interface

Facade describes the model on Its:

— Type level:
» Packages
 Classifiers
* Properties

— Instance level:

* Instances

 Reflective Properties for OCL meta level
Operations

Parser

OCL Grammar does not produce a
LR-Language

Changes to the grammar are necessary
Choice of parser generator: SableCC

Enlargement of the language is circumvent
by concrete syntax

New grammar is LALR(1), the parser
accepts the same language

Context Checker

« OCL type system consists of predefined and
model types

« Java Interfaces describe predefined types.
— Instances implement these interfaces
— Java Reflection API resolve the interface’'s properties.
— This allows later changes to the OCL type system to
be reflected
* Model types and their properties are resolved
through the model interface

Visitor Pattern

« SableCC generates
Parser and Visitors.

* When a Visitor visits a n |
node in three phases:

— in ... is called when [case
entering a node 7TV
. 2. 3. ..

— case ... lets the visitor 1
visit the node'‘s V2N 2 B
children

— out ... Is called when
leaving a node

» out

Type check

Implementation of a static type check
Usage of the Visitor-Pattern

AST is traversed bottom-up from left to
right by overriding out methods.

Exceptions of this order are implemented
by redefining case methods.

Types are determined at the bottom of the
tree and used in the parent nodes until the
root Iis reached

Interpreter

« Corresponding to the type system there
are predefined and model instances

* Predefined instances are implemented on
the basis of the type interfaces

* Model instances delegate to the model
interface

Evaluation

* Values are evaluated bottom-up from left
to right.

» Constraints must be evaluated for every
iInstance of a type

* The respective constraint holds if the root
node evaluated to true

MOF Bridge

« Java Metadata Interface (JMI)
— MOF Mapping for Java

— MDR implementation supports import of
metamodel over XMl

« JMI enables access to MOF compliant
metamodels

 MOF Bridge connects the model interface
with JMI

Sequence

validator

mofFacade
(MOF Bridge)

request(OCL/UML concept)

mofMetadata

(JMI)

<

response(OCL/UML concept)

request(MOF concept)

response(MOF concept)

<

What did we actually achieve?

Concrete JMI technologies (e.g. MDR) represent
the UML Metamodels 1.3 and 1.4 and its
iInstances

This representation is translated by the

Abstraction Layer of the framework:

— MOF to UML by the MOF Bridge

— UML to OCL by the model interface and the
framework

OCL semantics are stipulated for the UML

Metamodels.

Constraints can now be validated by the
framework

By-Products

The Abstraction Layer of the framework
facilitates:

« Support of OCL for arbitrary models

« Support of OCL for MOF compliant
metamodels

* The definition of a general OCL tool
interface

Conclusion: Summary 1

* Presentation of UML Profiles and the
subject of the diploma thesis

* Model interface
— Basic Idea
— Type and instance level

* Parser
— Changes to the grammar, LALR(1)

Conclusion: Summary 2

» Context Checker

— Implementation of the type level

— Description of the static type check algorithm
* Interpreter

— Implementation of the instance level
— Description of the evaluation algorithm

 MOF Bridge
— JMI

		fadi.chabarek@web.de
	2004-07-22T12:09:02+0100
	Berlin
	Fadi Chabarek
	I am the author of this document

