
Development of an
OCL-Parser for

UML-Extensions

Closure of a Diploma Thesis
Fadi Chabarek

Introduction

• Short explanation of the subject and its
main technologies

• Introduction to the developed solution:
– framework‘s architecture
– model interface
– parser, context checker, interpreter
– MOF Bridge

OCL
• Semiformal Constraint Language
• Part of the UML
• Supports invariants, pre and post conditions
• Constraints are defined for types / model

elements:

context Company inv:
self.numberOfEmployees > 50

context Person::income(d : Util::Date) : Integer
post: result = 5000

Metamodeling

MOF Model

M3 layer: meta-metamodel

M2 layer: metamodels

M1 layer: models

M0 layer

...

...

UML
Metamodel

IDL
Metamodel

UML Models IDL Interface

Connection: UML Profiles

• Extension system of UML
• Define additional constraints to the UML

Metamodel
• Narrow models down to domain specific

requirements
• Constraints described through OCL can be

validated

Diploma Subject

• OCL expressions have to be interpreted in the
context of UML Profiles and the UML-
Metamodels 1.3 and 1.4.

• Therefore a „Parser“ has to be developed,
which:

– gets an UML model instance and an UML-Profile as
input

– and validates the adherence of the model to OCL
constraints defined by the given UML-Profile

Architecture

XMI

MOF Repository

OCL
File

Validator

Parser Context Checker Interpreter Report

Model Abstraction Layer

Model Interface

• Abstraction Layer to interpret OCL
constraints in context of arbitrary models

• Designated to be implemented for MOF
compliant metamodels

• Enables support of different versions of
the UML Metamodel

The Interface‘s Basic Idea
• OCL is defined in the

context of UML
• OCL augments its type

system through model
types via UML concepts
(e.g. UML Classifier,
Properties etc.).

• Description of these
concepts in a model
define the model‘s OCL
semantics

OCL
context

UML
metamodel

arbitrary
model

UML-Model
Binding

transitive
binding

OCL-UML
Binding

Structure of the Model Interface

Facade describes the model on its:
– Type level:

• Packages
• Classifiers
• Properties

– Instance level:
• Instances
• Reflective Properties for OCL meta level

Operations

Parser

• OCL Grammar does not produce a
LR-Language

• Changes to the grammar are necessary
• Choice of parser generator: SableCC
• Enlargement of the language is circumvent

by concrete syntax
• New grammar is LALR(1), the parser

accepts the same language

Context Checker

• OCL type system consists of predefined and
model types

• Java Interfaces describe predefined types.
– Instances implement these interfaces
– Java Reflection API resolve the interface‘s properties.
– This allows later changes to the OCL type system to

be reflected
• Model types and their properties are resolved

through the model interface

Visitor Pattern
• SableCC generates

Parser and Visitors.
• When a Visitor visits a

node in three phases:
– in … is called when

entering a node
– case … lets the visitor

visit the node‘s
children

– out … is called when
leaving a node

case

1. 2. 3. ...

in out

Type check

• Implementation of a static type check
• Usage of the Visitor-Pattern
• AST is traversed bottom-up from left to

right by overriding out methods.
• Exceptions of this order are implemented

by redefining case methods.
• Types are determined at the bottom of the

tree and used in the parent nodes until the
root is reached

Interpreter

• Corresponding to the type system there
are predefined and model instances

• Predefined instances are implemented on
the basis of the type interfaces

• Model instances delegate to the model
interface

Evaluation

• Values are evaluated bottom-up from left
to right.

• Constraints must be evaluated for every
instance of a type

• The respective constraint holds if the root
node evaluated to true

MOF Bridge

• Java Metadata Interface (JMI)
– MOF Mapping for Java
– MDR implementation supports import of

metamodel over XMI
• JMI enables access to MOF compliant

metamodels
• MOF Bridge connects the model interface

with JMI

Sequence

mofFacade
(MOF Bridge)

mofMetadata
(JMI)

request(OCL/UML concept)

request(MOF concept)

response(MOF concept)

validator

response(OCL/UML concept)

What did we actually achieve?
• Concrete JMI technologies (e.g. MDR) represent

the UML Metamodels 1.3 and 1.4 and its
instances

• This representation is translated by the
Abstraction Layer of the framework:
– MOF to UML by the MOF Bridge
– UML to OCL by the model interface and the

framework
• OCL semantics are stipulated for the UML

Metamodels.
• Constraints can now be validated by the

framework

By-Products

The Abstraction Layer of the framework
facilitates:

• Support of OCL for arbitrary models
• Support of OCL for MOF compliant

metamodels
• The definition of a general OCL tool

interface

Conclusion: Summary 1

• Presentation of UML Profiles and the
subject of the diploma thesis

• Model interface
– Basic Idea
– Type and instance level

• Parser
– Changes to the grammar, LALR(1)

Conclusion: Summary 2

• Context Checker
– Implementation of the type level
– Description of the static type check algorithm

• Interpreter
– Implementation of the instance level
– Description of the evaluation algorithm

• MOF Bridge
– JMI

		fadi.chabarek@web.de
	2004-07-22T12:09:02+0100
	Berlin
	Fadi Chabarek
	I am the author of this document

